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Abstract

The capability of simulating natural and forced convection has been recently developed and integrated into

PowerFLOW, a general purpose CFD solver based on the lattice Boltzmann algorithm. Several benchmark tests have

been performed to validate this buoyancy model. Two typical cases of Rayleigh–B�enard convection with the Rayleigh

number slightly above (Ra ¼ 2000Þ and below (Ra ¼ 1500Þ the critical Rayleigh number of 1708 were tested to verify the

conceptual and algorithmic correctness of the buoyancy model. Then simulations of turbulent natural convection in an

enclosed tall cavity with two different Rayleigh numbers, Ra ¼ 0:86� 106 and Ra ¼ 1:43 � 106, were carried out and

found to be in a very good agreement with the experiments of Betts and Bokhari.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Natural convection, or buoyant force driven flow due

to temperature differences in the fluid is one of the

classical hydrodynamic topics that span off seminal

research in stability theory, dynamical systems, and non-

linear science in general [1]. In addition to this funda-

mental importance, buoyancy effects are essential in a

variety of industrial applications involving significant

spatial variation of temperature, such as in solar energy

collectors, building ventilation, chimney design, auto-

motive under-hood flows, boiler design, etc. Also, in

meteorological flows the buoyancy force is almost al-

ways important.

Except for the simplest geometries and slightly

supercritical regimes, no analytical solutions exist for
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buoyant flows. With the help of computers, the equa-

tions governing convective flows can now be solved

numerically. These simulations are of course limited by

the power of both computers and the numerical algo-

rithms employed. Currently, direct numerical simulation

(DNS) is limited to low Reynolds number situations

whereas for high Reynolds number flows turbulence

modeling becomes necessary. When applied to natural

convection, the entire turbulence modeling approach

involves specific as well as non-specific difficulties. First

of all, an accurate boundary layer model is necessary to

treat wall-bounded flows unless the viscous sublayer can

be resolved, which is practically impossible at high

Reynolds number [2–4]. However, no such universally

valid model exists at the present time. In addition, the

Reynolds numbers for buoyancy-driven turbulence are

often in the transitional range, which makes the mod-

eling issues even harder. Furthermore, the presence of

buoyancy force introduces an additional anisotropy of

the unresolved scales and thus invalidates some of the

assumptions intrinsic in traditional turbulence closures,

especially the two-equation turbulence models.
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As early as in 1993, researchers started to directly

simulate Rayleigh–B�enard convection using lattice

Boltzmann-based approach [5–7]. Since then, the lattice

Boltzmann-based numerical algorithm has been signifi-

cantly improved over the past 10 years or so. The

instability of Rayleigh–B�enard convection near the

critical Rayleigh number can be accurately predicted by

LBM approach [8].

In this paper, we demonstrate that combining lattice

Boltzmann method (LBM) with turbulence modeling in

an all-purpose code can simulate difficult natural con-

vection flows with very good accuracy. Since the last

decade, LBM has developed as an important alternative

to conventional computational fluid dynamics (CFD)

methods. Based on microscopic kinetic theory, LBM

uses a simple kinetic model obeying fundamental con-

servation laws and symmetries in order to simulate

macroscopic hydrodynamics. It is well recognized that at

the nearly incompressible limit LBM is essentially an

explicit finite-difference scheme with the second order

accuracy in both time and space [9,10]. Many physical

models and extensions of the method have been for-

mulated that cover a wide range of complex fluids and

flows. Because of its many desirable features such as low

numerical diffusion, scalable performance in parallel

computing environment, coding simplicity, and robust-

ness in dealing with complex boundary conditions, LBM

has already had substantial impact on fundamental re-

search and engineering applications [10–17].

PowerFLOW is a general purpose CFD solver

for turbulent and laminar weakly compressible flow

based on lattice Boltzmann algorithms. In addition to

the common advantages of LBM that are listed above,

it has several key extensions to the basic LBM algo-

rithm:

(a) An advanced renormalized group theory (RNG)

based turbulence model is incorporated into the ba-

sic LBM. In addition to providing LBM with the

general capability to model high Reynolds number

flow, RNG model is well suited for performing

time-dependent very large eddy simulations (VLES)

[18–21]. Implementation of the turbulence modeling

capability has been only possible on the foundation

of a unique slip algorithm that relates particle distri-

bution functions at a solid wall to the microscopi-

cally defined local value of wall shear stress.

(b) An additional scalar transport equation coupled

with LBM is introduced for predicting temperature

evolution. By removing the energy conservation

constraints in LBE, the numerical stability and sol-

ver’s capability are greatly improved [22,23].

(c) A volumetric based surface scatter algorithm is ap-

plied for accurate calculation of the surface mass

and momentum fluxes in general flow/geometry situ-

ations [24].
During the last few years, many academic and

industrial benchmarks have been successfully validated

against experimental data. Lattice Boltzmann method

now plays an increasingly important role in engineering

research and applications [25–27].

In this paper, we first describe some of the funda-

mental LBM extensions for buoyancy, heat transfer and

turbulence. These form the core algorithms. Then we

present benchmark simulations of buoyancy-driven

flows. The two-dimensional Rayleigh–B�enard convec-

tion and turbulent natural convection in an enclosed tall

cavity have been simulated to verify and validate the

solver. Although LBM has been used in direct numerical

simulation of Rayleigh–B�enard convection in the past

[5–8,28], this is the first application of turbulence mod-

eling approach combined with lattice Boltzmann meth-

odology to simulate turbulent convection and especially

to study quantitative details of turbulent boundary

layer. Conclusions are drawn at the end based on these

simulation results.
2. The numerical algorithm

2.1. Extended lattice Boltzmann method

The most common form of the lattice Boltzmann

equation (LBE) is [10,13,29]:

fiðx þ ĉiDt; t þ DtÞ � fiðx; tÞ ¼ Ci; ð1Þ

where fi are the particle density distributions defined for

the finite set of discrete particle velocity vectors fĉi:
i ¼ 0; . . . ; bg. These particle speeds define links among

nodes on a given lattice. The collision term on the right-

hand side of Eq. (1) now often uses the so called

Bhatnagar–Gross–Krook (BGK) approximation [13,14,

17,29],

Ci ¼ � fi � f eq
i

s
; ð2Þ

with a single relaxation time s. Here, f eq
i is the local

equilibrium distribution function that has an appropri-

ately prescribed functional dependence on the local

hydrodynamic properties. The basic hydrodynamic

quantities, such as fluid density q and velocity u, are

obtained through moment summations in the velocity

space

qðx; tÞ ¼
X
i

fiðx; tÞ;

quðx; tÞ ¼
X
i

ĉifiðx; tÞ:
ð3Þ

In addition, one can also define a fluid temperature T
from
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q
D
2

T ðx; tÞ ¼
X
i

1

2
ðĉi � uðx; tÞÞ2fiðx; tÞ; ð4Þ

where D is the dimension of the momentum space de-

fined by the set of discrete lattice velocities [30]. With an

appropriate choice of lattices and suitable f eq
i , the LBE

obeys conservation laws for mass, momentum, and en-

ergy in the physical space and recovers the Navier–

Stokes equations at a long wavelength, low frequency

limit through a Chapman–Enskog expansion [10]. The

ideal gas equation of state, p ¼ qT , is also recovered.

The fluid kinematic viscosity is uniquely mapped to the

relaxation time:

m ¼ s

�
� 1

2

�
T ; ð5Þ

including situations where both m and s vary non-trivi-

ally in time/space as defined by complex physics phe-

nomena that are not necessarily reducible to directly

modeled hydrodynamics [17].

With the conserved energy degree of freedom, the

common LBM can be naturally extended to simulate

thermodynamics [10,15,31]. When a sufficient number of

particle speeds is used, it can be shown theoretically that

the LBM leads to the correct full set of thermohydro-

dynamic equations of an ideal-gas fluid [15,31]. How-

ever, from both the fundamental and practical points of

view such an approach has several drawbacks. First of

all, it has been proven that LBMs with the energy degree

of freedom do not automatically guarantee the global H -

theorem [22,32]. As a consequence, each such system

is potentially more unstable than the corresponding

non-energy-conserving scheme. Second, without a sub-

stantial generalization to the BGK collision term it is

difficult to achieve Prandtl number values that are sub-

stantially different from unity. Also, the temperature

range is limited in such a way that the maximal allow-

able value of temperature achieved in the thermal lattice

Boltzmann approach is only about twice the minimal

value. Finally, there are significant compressibility ef-

fects in body force related thermal flows.

To overcome these issues, in this work we drop the

constraint of energy conservation in the LBM and

introduce an additional scalar transport equation for the

energy evolution [23]. It should be mentioned that the

same approach is currently used for all thermal trans-

port related problems in our work. The fundamental

idea of this LBM based algorithm can be briefly sum-

marized as follows. First of all, the fluid dynamics part

(i.e., the mass and momentum evolution) is represented

by a modified isothermal LBM, while the energy evo-

lution part is determined by an additional transport

equation [8,28,6]. The latter can be solved via either a

finite difference scheme or an auxiliary LBM. Secondly,

these two parts are coupled through a properly defined
buoyancy force term in the LB module of the solver.

Because of the absence of temperature dynamics in the

equilibrium distribution functions, this LBM based

thermal scheme can achieve much improved numerical

stability while still recovering the same macroscopic

thermodynamics. The supplemental energy transport

equation has the usual form:

qCpðot þ u 	 rÞT ¼ r 	 jrT þ W; ð6Þ

where j ¼ qCpm=Pr is the heat conductivity that can be

specified flexibly according to the desired Prandtl num-

ber. The W-term represents viscous dissipation as well as

the other volumetric energy sources. The limitations on

the Prandtl number and temperature variation range are

no longer present in this approach. Solving the scalar

transport equation is a rather straightforward compu-

tational task. In our simulations, an extended Lax-

Wendroff scheme is applied [16,20].

Under the Boussinesq approximation, the buoyancy

force can be calculated in a straightforward way based

on the temperature field variation

Fbðx; tÞ ¼ qðx; tÞ 	 g 	 a 	 ðT ðx; tÞ � TrefÞ; ð7Þ

where g is the gravity acceleration, Tref is a constant

reference temperature, and a ¼ � 1
q ð

oq
oTÞp is the thermal

expansion coefficient. Ignoring higher order contribu-

tions in the local Knudsen number, the appropriate

buoyancy force that needs to be fed back into the LBM

can be simply expressed as [33]

Dfiðx; tÞ ¼
wi

qT0

ĉi 	 Fbðx; tÞ; ð8Þ

where the constant weights wi and T0 are directly

determined by the particular LBE model used for the

corresponding non-buoyant case. It is easy to show that

at each time step the local momentum is altered by the

following amount:

Fbðx; tÞ ¼
X
i

ĉiDfiðx; tÞ: ð9Þ

The combination of Eqs. (1)–(3), (6)–(8) forms our

hybrid LBM scheme for modeling buoyant flow.
2.2. Fluid turbulence model

In our current simulations of high Reynolds number

flow, the subgrid scale effect of turbulence on the re-

solved flow field is through eddy viscosity mt and tur-

bulent thermal diffusivity vt (¼ mt=PrtÞ. A two-equation

model based on the Renormalized Group (RNG) tur-

bulence model [18,19] is applied to determine the tur-

bulent transport coefficients
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Here, jSj is the magnitude of the strain rate tensor of the

resolvable velocity field, and ~g is a function of

gð� kjSj=�Þ, gx ð� kjXj=�Þ and local helicity, as a gen-

eralization from [18,19]. Similar to the scalar energy

transport equation, the above equations are solved on

the same lattice with an extended Lax–Wendroff scheme

[20].

2.3. Boundary conditions

In this work, we use the volumetric scattering based

boundary condition treatment as the general scheme

[24]. For both basic research and real-world engineering

applications, this approach has a number of advantages

over the point-wise bounce back algorithm often used in

the academic community. First, it ensures exact con-

servation of surface fluxes of mass, momentum, and

even energy on the discretized surface facets, which is

critical to the realization of turbulent wall functions.

Also, it allows for smooth surface distribution of phys-

ical quantities. Finally, this algorithm is capable of

dealing with arbitrary complex geometries.

Here we briefly outline the basic concept of this ap-

proach. On a facetized surface in Fig. 1, each facet has a

set of extruded parallelogram (parallelepiped in three

dimensions) corresponding to the discrete directions ðciÞ
with the volumes, V a

i ¼ jci 	 najAaDt. n is a surface nor-
Fig. 1. Illustration of volumetric boundary condition. The

dark-solid line segments are facets of the curved surface (dash-

dotted line), the dashed-line-bounded regions represent paral-

lelograms in particle moving directions.
mal of the facet pointing towards the fluid domain side,

and Aa is the surface area of the facet. At each time step,

the advection process propagates particles from the

overlapping area of each fluid cell and parallelogram of

each facet to the facet along the particle moving direc-

tions. Then on each facet, momentum flux is treated

according to different boundary types. For the no-slip

type, the particle momentum is reversed in both the

normal and tangential directions. For the free-slip type,

the particle momentum is reversed in the normal direc-

tion while still maintained in the tangential direction.

The zero mass flux is always maintained [24]. Precise

control of the tangential momentum flux, via a proper

combination of the no-slip and free-slip conditions, is

the key to achieve correct turbulent momentum flux

based on a momentum wall function. For this study, the

following wall function is applied

uþ ¼ 2:44 ln yþ þ 5:5;

where uþ ¼ u=u
 and yþ ¼ y 
 u
=m. Here u
 is the sur-

face friction velocity, and y the normal distance from the

wall. A thermal wall function based on standard simi-

larity laws [1] is also used for predicting temperature in

turbulent boundary layers.

Tþ ¼ 1:75 ln yþ þ 3:9;

where Tþ ¼ ðTw � T ÞqCpu
=qw. Here Tw is the surface

temperature and qw the surface heat flux. This thermal

wall function relates near wall fluid temperature values

evolving according to Eq. (6) to the fixed values of

surface temperature and/or heat flux, using the micro-

scopically defined wall shear stress and macroscopically

defined turbulent quantities. In this way, both the Von

Neumann and Dirichlet problems for Eq. (6) are well

posed.

Multiple variable resolution regions (VRs) are ap-

plied in the simulations. The resolution differs by a

factor of two between VRs that are next to each other.

On the VR boundaries, all quantities, including the

particle distribution functions, turbulent properties,

fluid temperature, etc, are treated in such a way that

conservation of mass, momentum and energy is pre-

served and the mean flow as well as turbulent quantities

are continuous across the interface.
3. Simulation results

3.1. Rayleigh–B�enard convection

Rayleigh–B�enard convection has been extensively

studied theoretically, experimentally, and numerically.

We have simulated several near-critical situations in

order to conceptually verify the buoyancy model. We

concentrate on one of the most common setups of
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Rayleigh–B�enard convection, where a thin layer of vis-

cous fluid is confined by two horizontal rigid plates

maintained at different temperatures (Fig. 2). The net

buoyancy force acting on fluid with a positive thermal

expansion coefficient is in the opposite direction to the

gravity. Therefore, there is a net upward buoyancy force

acting on the fluid if the bottom plate is maintained at a

higher temperature than the top one. The classical

studies tell us that at a small temperature difference, the

buoyancy force is balanced by viscous drag and heat

diffusion. The fluid will remain quiescent until the tem-

perature difference exceeds a certain critical value, after

which the still fluid becomes unstable and convective

motion occurs.

The ratio of buoyancy force to the product of viscous

force and heat diffusion rate defines the Rayleigh num-

ber

Ra � aDT
gL3

mv
; ð11Þ

where a is the thermal expansion coefficient, Th and Tc

are the temperatures of the hot, lower and the cold,

upper plates, respectively, DT ¼ Th � Tc, g is the mag-

nitude of gravitational acceleration, L is the distance

between the plates, m is the kinematic viscosity, and

v ¼ j=qCp is the thermal diffusivity. Convection occurs

when the Rayleigh number exceeds a critical value Rac.

There is a classical theoretical result, well confirmed by

both experiment and numerical simulation, that the

critical Rayleigh number for the configuration shown in
Fig. 2 is Rac ¼ 1708, above which the fluid become

unstable and two dimensional rolls form if the deviation

from the Boussinesq approximation is small. For veri-

fication of the basic algorithm, we use the fact that the

instability develops very slowly at near-critical Rayleigh

numbers and that the first unstable disturbance is two

dimensional. Therefore, performing all the tests in 2D

should save computational time without sacrificing

accuracy.

As mentioned above, LBM-based simulation of

slightly supercritical convection has been already re-

ported by Shan [8], whose 2D setup we exactly follow.

The x-axis is attached on the cold wall pointing to the

right and the y-axis points down towards the hot wall.

The coordinate origin is fixed at the upper left corner.

Periodic boundary conditions are applied in the x-
direction and non-slip boundary conditions are applied

at the rigid walls. The aspect ratio Lx=Ly is chosen to be

commensurate with 2p=kc, where Lx is the plates’ length,

Ly is the distance between the plates, and kc ¼ 3:12 is the

analytically known non-dimensional wave number of

the first unstable mode. The resolution is therefore

chosen as 101 lattice cells in the x-direction and 50 lattice

cells in the y-direction. Gravitational acceleration is

along the y-direction.
Two cases with different Rayleigh numbers have been

set up to test the model near the critical Rayleigh

number. In Case I, the Rayleigh number is 1500 so that

the fluid should stay stationary. In Case II, the Rayleigh

number equals 2000 so that one should expect super-

critical behavior and pattern formation.
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3.1.1. Case I: Ra ¼ 1500
It could be very difficult to observe whether or not

the initially still fluid will remain stationary at slightly

sub-critical Rayleigh number since the instability (if any)

would develop very slowly. In contrast, it is much easier

to detect whether an initially non-uniform flow eventu-

ally becomes stationary under the same conditions.

Therefore, to test whether at Ra ¼ 1500 the fluid be-

comes asymptotically stationary an initial large pertur-

bation was applied to the temperature field:

T0 ¼ Tc þ
y
Ly

DT 0:8

�
þ 0:2 sin 2p

x
Lx

� ��
: ð12Þ

The simulation was started from zero fluid velocity.

This case was simulated on a Linux machine with a

single 2.4 GHz CPU. It took about 1.5 h to reach

120,000 timesteps, or 4.3 · 10�6 s per timestep per voxel.

It is observed that under this perturbation, the fluid is

unsteady initially. Two convective cells can be seen in

Fig. 2(a) and (b). With time, this artificially induced

convection dies out and the cells gradually disappear, as

seen in Fig. 2(c) and (d). Fig. 2 also shows that the

temperature field was disturbed initially, but gradually

became linear as the flow turned into the purely con-

ductive state. This simulation has run for 120,000

timesteps to make sure the fluid remains stationary

thereafter. Reaching a stationary regime is further

demonstrated in Fig. 4(a) where we plot the vertical

velocity at a fixed point as a function of time. The

measurement point was chosen at a place where the
Fig. 3. Case II: flow isotherms an
maximum value was expected corresponding to the

existence of two convective cells at the initial time. The

magnitude of vertical velocity decreases as the convec-

tive cells are weakening over time until it finally drops to

the random noise level when the cells disappear around

the time frame 20 (equivalent to 60,000 timesteps). The

vertical velocity is always positive when a pronounced

cell pattern can be observed as shown in Fig. 2(a) and

(b). However, after frame 20, no clear flow pattern may

be seen as shown in Fig. 2(c) and (d). The vertical

velocity is actually fluctuating around zero after frame

20 as shown in Fig. 4(a), which confirms that the flow

has become stationary.

3.1.2. Case II: Ra ¼ 2000
Here we expect the instability to develop naturally, so

the simulation was started from the purely conductive

static state. No perturbation was introduced except for

the intrinsic machine noise. It was simulated on the same

Linux box mentioned above and took about 2.7 h

(210,000 timesteps) to reach quasisteady-state.

Shown in Fig. 3 are isotherms and flow streamlines at

different time instants. Initially, the temperature is dis-

tributed linearly in the vertical direction (Fig. 3a). After

about 100,000 timesteps (or 20 time frames), two con-

vective cells start to form (Fig. 3b), although the average

velocity magnitudes are small compared to that at the

final stable convective state (see Fig. 4b). The tempera-

ture field is slightly disturbed at this stage. The flow

continues to develop into stronger convective cells until
d streamlines at Ra ¼ 2000.
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Fig. 4. Vertical velocity as a function of time: (a) the data were

recorderd every 3000 timesteps (1 time frame) and (b) 5221

timesteps (1 time frame).

Table 1

Properties of dry air

Temperature (�C) 15.1 34.7 54.7

Thermal conductivity

(W/mK · 103)

25.3 26.8 28.3

a (K�1 · 103) 3.47 3.25 3.05

m (m2/s · 106) 14.6 16.5 18.4

Prandtl number 0.704 0.700 0.697
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it reaches a stable quasisteady-state (Fig. 3c and d). The

simulation was stopped at half a million timesteps.

As the elegant physics of near-critical convective cells

has been extensively studied before, all of our results

presented above should be viewed as just a verification

of the hybrid LBM/macroscopic approach applied to

buoyancy in the code. In this regard, let us reiterate that

there has been much previous DNS work on this prob-

lem, including the LBM-based study of [8]. Our results

are perhaps much more novel for the difficult problem of

high Rayleigh number, turbulent convection to which

we now turn.

3.2. Turbulent natural convection in an enclosed tall cavity

Turbulent natural convection in a confined enclosure

with two differentially heated vertical walls has been and

remains to be an attractive and challenging subject in

turbulence research [34–36]. In this configuration,

buoyancy is the only driving force for fluid motion, but

it does not make the problem any simpler. As a matter
of fact, although much of the flow is turbulent, there are

extensive low Reynolds number regions and even re-

gions of laminar flow, which poses a significant chal-

lenge to near-wall turbulence modeling. Note that in

vertical convective cell boundary layers the shear stress

varies rapidly and changes sign whereas the near-wall

heat flux is about constant. Aside from being interesting

from the modeling point of view, this setup carries a

number of features important for industrial applications

involving natural convection within enclosures, such as

electronic device cooling, building ventilation, solar en-

ergy collectors, and many others.

Despite this fundamental and practical importance,

high quality experimental data on turbulent natural

convection in enclosures including both temperature and

velocity fields is quite limited [36–38]. The experiment of

Betts and Bokhari [36] might be the only one that has

easily accessible public data at http://cfd.me.umist.ac.uk/

ercoftac/ (case 79).

The experimental data is available for a rectangular,

large aspect ratio (2.18 m high by 0.076 m wide by

0.52 m deep), air-filled cavity. From the point of view of

turbulence model verification studies, there are advan-

tages for choosing a high aspect ratio cavity versus near-

square cavity. The cavity width-based Rayleigh number

that is required to ensure turbulent flow within the

cavity is much smaller than that for a square cavity. This

means that the cavity width and/or the temperature

difference can be made smaller. The reduced tempera-

ture difference between the vertical walls makes it pos-

sible to neglect the air molecular property variation

within the cavity.

In the experiment [36], two different Rayleigh num-

bers of 0:86� 106 and 1:43� 106 were achieved by

varying the temperature difference between vertical

plates. Under these conditions the cavity core flow is

fully turbulent and the air property variations with

temperature are small (see Table 1). The temperature

and flow patterns were found to be closely two-dimen-

sional.

In our studies, two simulation cases were set up after

the above mentioned experimental conditions, but re-

duced to two dimensions (Fig. 5). The cold and hot walls

have fixed temperatures listed in Table 2. The horizontal

variation of surface temperature at the top and bottom

http://cfd.me.umist.ac.uk/ercoftac/
http://cfd.me.umist.ac.uk/ercoftac/


Fig. 5. Sketch of the 2D tall cavity.

Table 2

Parameters for the two Rayleigh numbers

Rayleigh number 0:86 � 106 1:43 � 106

Cold wall temperature (�C) 15.1 15.6

Hot wall temperature (�C) 34.7 54.7
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Fig. 6. Simulation results with three different resolutions of

h50, h100, and h150.

Fig. 7. Lattice grids used in the resolution dependence study.

The near-wall resolution is doubled.
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walls was not exactly linear in the experiment, but to

simplify the computational case setup we use a linear fit

Twall ¼ Tc þ
x
W

ðTh � TcÞ;

where Twall is the temperature of the top or bottom wall,

Tc ðThÞ is the cold (hot) wall temperature, x is the dis-

tance from the cold wall, and W is the cavity width.

Turbulent wall boundary conditions, as discussed in

Section 2.3, are applied to all solid surfaces that enclose

this cavity.

The fluid is initialized with zero velocity and linear

temperature profile set by Twall. A resolution dependence

study has been performed, with the special emphasis

paid to the sensitivity of the simulation results to

resolving the large temperature gradients near vertical

walls. Shown in Fig. 6 are temperature profiles at the

middle-height ðy=H ¼ 0:5Þ obtained with three different

resolutions. The first set of data corresponds to a reso-

lution of 50 lattice cells across the cavity width (the solid

line), denoted by h50. The data obtained using the h100

resolution is plotted with the dashed line and h150 with

dot-dashed line. Also shown in Fig. 6 are the experi-
mental data. It is clear that there is virtually no differ-

ence between higher resolution (h100 and h150) results

which agree with the experiment very well, but using

lower resolution leads to a significant under-prediction

of the temperature slope.

However, it is only natural to assume that such a

high resolution may be unnecessary in the regions away

from the vertical walls where the temperature gradients

are small, in full analogy with the conventional CFD
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wisdom. A case was set up in order to examine whether

the higher resolution is only needed near the vertical

walls (Fig. 7). In this case, the resolution at the center

region is h50 but is doubled in the near wall regions.

Compared to the uniform resolution case of h100,

the results are virtually the same. Therefore, this vari-

able resolution was used for all the simulations there-

after.

The simulation was performed on a Compaq Al-

phaServer ES40 with 4500 MHz CPUs. It took about 11

h to reach equilibrium state, or 2 · 10�5 s per timestep

per voxel. Shown in Figs. 8 and 9 are the mean tem-

perature profiles at various heights for Ra ¼ 0:86� 106

and Ra ¼ 1:43� 106, respectively. The solid lines cor-

respond to the simulation results and the circles repre-

sent experimental data. In both cases, the predicted

mean temperature profiles agree with experimental data

very well. The mean vertical velocity profiles predicted

by the numerical simulations also agree with the exper-

iment well in general. The discrepancy between the
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Fig. 8. Mean temperature and velocity profiles at
simulation results and the experiment becomes larger in

the regions close to the top and bottom walls (not shown

in the plots) where the deviation of the computational

setup from the experimentally imposed/observed bound-

ary conditions plays a stronger role.

We have been unable to find any published CFD

results related to this configuration, although it has been

used as one of the test cases for the 5th ERCOFTAC/

IAHR Workshop on Refined Flow Modelling in 1996

[36]. The simulation results shown in Figs. 8 and 9 are

considered to be very satisfactory. However, there is still

room to improve their quality. As but one example, the

temperature boundary conditions at the top and bottom

walls may be refined by interpolating the near-surface

experimental data. Let us also emphasize that these data

have been obtained with an all-purpose software that

contains no adjustable parameters specific to the con-

vective flow setups studied here. As such, these results

may attest not only to the correctness of the buoyancy

model implementation but to the general quality of
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various heights for the Ra ¼ 0:86 � 106 case.
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turbulent flow/heat transfer modeling capability in this

code.
4. Conclusions

The buoyancy model implemented here has been

demonstrated to correctly and accurately represent

the physics of buoyancy-driven flows. It captures the

(in)stability of Rayleigh–B�enard convection near the

critical Rayleigh number. It also accurately predicts

the experimentally observed temperature and velocity

fields in turbulent natural convection in a large aspect

ratio enclosed cavity, for which no previous CFD work

has been published per our best knowledge. As this code

naturally inherits a number of attractive features, such

as easy handling of complex geometry, fully parallel

computation, and turbulence modeling capability, it

should be suitable for a wide range of flow simulations

involving buoyancy force.
The success of LBM in predicting buoyancy-driven

flows is based on several physics and algorithmic

advancements achieved in recent years. The addition of

capability to simulate natural convection should help

LBM to become a more powerful tool amongst engi-

neers and researchers in the CFD community and in

return will help us better understand and further im-

prove the lattice Boltzmann method.
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